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We prove, via an elementary variational method, one-dimensional �1D� and two-dimensional �2D� localiza-
tion within the band gaps of a periodic Schrödinger operator for any mostly negative or mostly positive defect
potential, V, whose depth is not too great compared to the size of the gap. In a similar way, we also prove
sufficient conditions for 1D and 2D localization below the ground state of such an operator. Furthermore, we
extend our results to 1D and 2D localization in d dimensions; for example, by a linear or planar defect in a
three-dimensional crystal. For the case of D-fold degenerate band edges, we also give sufficient conditions for
localization of up to D states.
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I. INTRODUCTION

Localization by impurities in periodic potentials with
spectral gaps �band gaps� is a central topic in solid-state
physics and semiconductor devices1 and it has direct analogs
for other propagating-wave systems, such as for photonic
crystals in electromagnetism.2 We prove that, in one and two
dimensions �1D and 2D�, localized solutions must arise in
the gaps of a periodic Schrödinger operator for any “mostly”
negative or mostly positive defect potential whose depth is
not too great compared to the size of the gap. To our knowl-
edge, this is the first rigorous sufficient condition of this sort
in 2D, aside from informal arguments based on effective-
mass free-electron models close to quadratic gap edges,3 ex-
tending an earlier theorem for 1D localization in gaps,4 and
is quite different from the many rigorous asymptotic gap-
localization results in the limit of very strong defect
potentials.5–10 In addition to localization in gaps, we also
prove 1D and 2D localization below the ground state of a
periodic potential for any mostly negative defect potential,
extending earlier known results for localization in vacuum
for any mostly negative potential,11–13 localization in the pe-
riodic case but for a strictly nonpositive defect potential,14,15

and 1D localization for mostly negative defects.4 Further-
more, we extend our results to 1D and 2D localization in d
dimensions; for example, establishing localization for a lin-
ear or planar defect in a three-dimensional �3D� crystal. For
the case of D-fold degenerate band edges, we show localiza-
tion of D bound states for definite-sign defect potentials and
more generally relate the number of localized modes to the
signs of the eigenvalues of a D�D matrix. Our proofs rely
only on elementary variational eigenvalue bounds, general-
izing an approach developed in Ref. 13.

One-dimensional localization in vacuum by an arbitrary
attractive potential is easy to prove by a variational method,
at the level of an undergraduate homework problem,16 while
a minimum nonzero depth for a potential well is required for
localization in vacuum in three dimensions.17 The 2D case is
more challenging to analyze. The first proof of 2D localiza-
tion in vacuum by an arbitrary attractive potential was pre-
sented in 1976 by Simon11 using more sophisticated tech-
niques that also lead to asymptotic properties of the bound
states. An elementary variational proof in vacuum was pro-
posed by Picq18,19 �and was adapted to Maxwell’s equations
in optical fibers by Bamberger and Bonnet19�, while a differ-
ent variational proof was independently developed by Yang
and de Llano.13 An informal asymptotic argument utilizing
properties of the vacuum Green’s function was presented by
Economou.12 On the other hand, in the case of periodic po-
tentials, rigorous results for the existence of bound states
from weak defect potentials V are more limited. Frank et
al.15 analyzed the case of potentials V�0 localizing at ener-
gies below the ground state of a 2D periodic Schrödinger
operator; they not only proved that a localized state exists,
but also bounded its energy in terms of a related vacuum
localization problem. Here, we use a different technique,
based on the variational method of Ref. 13, to prove exis-
tence of localized modes in 1D and 2D for any indefinite-
sign but “mostly” negative defect potential V. This is closely
related to our generalization of Ref. 13 to index guiding in
the periodic Maxwell’s equations.20 �Indefinite-sign localiza-
tion was also considered for discrete Schrödinger
operators.21� As for localization in arbitrary gaps, however,
we are not aware of published rigorous results in 2D that are
valid for weak V. Prodan4 proved that arbitrarily weak de-
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fects localize states in 1D gaps using an asymptotic Birman-
Schwinger technique similar to Ref. 11, imposing a mostly
negative or positive condition on the defect potential identi-
cal to the one we use below; Prodan’s result also applies to
localization below the ground state of a periodic 1D poten-
tial. Various authors have shown that for strong defect poten-
tials, those of the form �V where �→�, there exists a bound
on the number of eigenvalues crossing the gap.5–9 Localiza-
tion has also been proved in the limit of high-order gaps in
1D.22 Another common, albeit somewhat informal, approach
to gap localization is to consider localization for energies
close to a nondegenerate quadratic band edge, making an
effective-mass approximation and then quoting the results
for vacuum.3 Our proof of localization in gaps is nonasymp-
totic, does not assume a particular form of the band edge,
and is an extension of the elementary variational technique
of Ref. 13 for localization in vacuum. The trick behind the
variational proof is to take the midgap energy, Eg, of the
perturbed Schrödinger operator, H, and transform the ques-
tion of energies near Eg into an extremal eigenvalue problem.
There are two typical ways to do this. One is to consider
�H−Eg�−1, which seems closely related to the Green’s func-
tion method of Ref. 12 and to the Birmann-Schwinger
condition,23 but such an operator is hard to evaluate explic-
itly and mainly lends itself to asymptotic analyses. Another
method is to consider �H−Eg�2, recently used for another
variational-type localization proof by Ref. 24, and it is this
method that we adopt here. The same techniques are used in
numerical methods to iteratively compute eigenvalues in the
interior of the spectrum of a large matrix, where �H−Eg�−1

corresponds to well-known shift-and-invert methods25 and
where �H−Eg�2 has also been used �but is computationally
suboptimal because it squares the condition number�.26,27

Other possible techniques9,22,28 have been suggested to us29

for proving such a theorem, but we are not aware of any
published results for this problem other than the 1D result of
Ref. 4. Localization by weak defects is also related to self-
focusing of solitons by nonlinearities, which was recently
considered for spectral gaps in periodic potentials.30

The contents of the individual sections are summarized as
follows. Section II provides a simple variational proof of the
fact that any arbitrary mostly negative and sufficiently local-
ized defect induces at least one bound state below the infi-
mum of the spectrum of a 2D periodic Schrödinger operator.
The 1D case is proved in a similar fashion. Section III gives
a generalization of that result by allowing the unperturbed
Hamiltonian to be periodic in d dimensions and our defect
potential to localize in two �or one� dimensions, but be peri-
odic �with the same periodicity as the unperturbed potential�
in the other d−2 �or d−1� dimensions. Section IV presents
our main results: it gives a sufficient condition for the exis-
tence of a bound state in a spectral gap of a 2D periodic
Schrödinger operator. The results from Sec. III can be ap-
plied to this case as well to allow periodicity in any arbitrary
extra number of dimensions �although the solution is only
localized in two of these dimensions�. The case of bound
states in a gap confined along one dimension is proved in a
similar way. Section V describes the case of degenerate band
edges as well as some other possible generalizations. Section
VI closes with some concluding remarks and possible future
directions.

II. BOUND STATES BELOW THE GROUND STATE OF A
PERIODIC POTENTIAL

Notation. In this section, unless otherwise stated, the sym-
bol �f will stand for the integral over all of R2 of the real-
valued function f .

The proof of the following will be a little simpler than the
one in Sec. IV. However, the ideas used here are almost the
same as those of the proof in Sec. IV, so it is hoped that after
going through this proof, the reader will easily follow the
latter. Note that the theorem in this section has also been
proved by other methods, but only for defect potentials that
are strictly nonpositive.14,15 This theorem will be slightly
generalized to allow for a defect potential that is localized in
two dimensions, but has an arbitrary periodicity in all other
dimensions in Sec. III.

A. Problem statement

Suppose we start with an unperturbed Hamiltonian

H0 = − �2 + V0, �1�

where V0 is a periodic potential �possible generalization to
nonperiodic potentials is discussed in Sec. V A�, which has a
minimum-energy eigenvalue E0 with at least one �degen-
eracy will be explored in Sec. V B� corresponding “general-
ized” eigenfunction �0 of the Bloch form:1 a periodic func-
tion with the same periodicity as V0 multiplied by eik·x,
giving a bounded ��0�. We introduce a localized, indefinite
�varying sign� defect, V, giving a new Hamiltonian H=H0
+V, satisfying the two conditions

� V��0�2 � 0 and �2�

lim
r→�

V�r,�� = 0. �3�

Such a V0 and V are shown schematically in Fig. 1 along
with a typical spectrum showing E0 �and also possibly a gap,
which is considered in Sec. IV�. We prove that conditions �2�
and �3� are sufficient to guarantee the existence of a bound
state with energy lower than E0. �Strictly speaking, in order
for an energy �E0 to be a “bound” state, the potential V must
be sufficiently localized so as to not alter the essential spec-
trum �energies of nonlocalized modes� of H0; Eq. �3� does
not appear to be strong enough. Weyl’s theorem provides a
sufficient condition of relatively compact V, such as the Kato
class of mostly square-integrable potentials, which seems to
include most realistic localized defects.31,32� The proof is es-
sentially a generalization of that in Ref. 13.

FIG. 1. �Color online� Example of a periodic potential V0 and
defect potential V with the spectrum ��H0� located at the right. The
spectrum of the unperturbed Schrödinger operator has an infimum
E0 and may also have a gap in the set �E1 ,E2�.
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B. Proof of 2D localization

Recall that the variational principle �or min-max prin-
ciple� states that the Rayleigh quotient �� ,H�	 / �� ,�	,
where �� ,		
���	 denotes the inner product between �
and 	 �and ���2 denotes �� ,�	�, for any trial function � �in
the appropriate Sobolev space� is an upper bound for the
ground-state eigenvalue of a Hermitian operator H.33–35

Therefore, to prove the existence of an eigenvalue less than
E0 �and thus a bound state�, it suffices to find a � such that

E��� 

��,�H − E0��	

��,�	
� 0. �4�

The key point is to find a trial function that will work even
for an arbitrarily small defect V. Motivated by Ref. 13, we
use the following trial function parametrized by a positive
number 
:

� = �0�, where � = e−�1 + r�

. �5�

Once the appropriate trial function is selected, the remaining
analysis is straightforward in principle—one simply plugs
the trial function into E��� and finds an 
�0 where it is
negative. The easiest way to do this is to take the 
→0 limit
of the numerator: if this limit is negative, then there must
also exist a small 
�0 where it is negative. This process,
which requires some care in taking the limits �limits and
integration cannot be interchanged in general�, is carried out
as follows.

Note that � is already in polar coordinates and that � is
normalizable for all such 
 since �0 is bounded. This trial
function has the key physically motivated property that the
limit of no localization, i.e., 
→0, gives the unperturbed
ground state �0. We write down the first two derivatives of �
for future reference

�� 

��

�r
= r̂ · �� = − 
�1 + r�
−1� , �6�

�� 

�2�

�r2 = 
�1 + r�
−2�
�1 + r�
 − 
 + 1�� . �7�

When H−E0 acts only on �0 in E���, the result is zero. The
remaining terms in the Rayleigh-quotient numerator, denoted
by U���, come from V and derivatives of �. After some
algebraic simplifications, U��� is given by �see the Appen-
dix�

U��� = ��,�H − E0��	

=� V���2 +� ��0�2�1

2
�2��2� − ��2�
 . �8�

Using Eqs. �6� and �7�, we obtain

�2� = 
�1 + r�
−2�
�1 + r�
 − 
 −
1

r

� , �9�

�2��2� = 2
�1 + r�
−2�2
�1 + r�
 − 
 −
1

r

�2. �10�

Plugging these two formulas into U��� results in the concise
form

U��� =� V���2 +� ��0�2
2�1 + r�2
−2�2. �11�

Note that the denominator of E��� �which is ���2� is always
positive and so does not affect the sign of U���. We want to
show that U���, and thus E���, will be negative for some
choice of 
. This will be done by showing that the term on
the right of Eq. �11� tends to zero as 
→0, while �V���2 will
be negative in this limit. Because ��0�2 is bounded, we have

� ��0�2
2�1 + r�2
−2�2

� 2
 max���0�2��
0

�


2�1 + r�2
−2�2rdr

= 2
 max���0�2��
1

�


2u2
−2�2�u − 1�du

� 2
 max���0�2��
1

�


2u2
−1�2du , �12�

where we have made the substitution u=1+r and then
bounded the integral again. Hence, it suffices to show that
the latter integral tends to zero. We calculate this integral
explicitly via integration by parts

�
1

�


2u2
−1�2du = −



2
u
e−2u
�

1

�

+ �
1

� 
2

2
u
−1e−2u


du =
3


4e2 .

�13�

Taking the limit as 
→0 yields zero as claimed above.
The leftover �V���2 term can be split into two parts. Let

V=V+−V−, where V+ and V− are the positive and negative
parts of V. Then we have

� ���2V =� ���2V+ −� ���2V−, �14�

where each ���2V� is a monotonically increasing function as

 decreases. This allows us to use Lebesgue’s monotone
convergence theorem36 to interchange the limit with the in-
tegration, arriving at

lim

→0

� ���2V� =� lim

→0

���2V� = e−2� ��0�2V� �15�

for each part. Putting all the information together, we have
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lim

→0

�� V���2 +� ��0�2
2�1 + r�2
−2�2� = e−2� ��0�2V � 0

�16�

by our main assumption �2�. Hence, the variational principle
says that there exists an eigenvalue below E0 for the system
and so the theorem is proved.

C. Proof of 1D localization

The case for 1D localization can be proved in an analo-
gous way, with simpler calculations, by using the trial func-
tion �0e−
x2

. A closely related result in 1D was presented by
Prodan:4 for any defect potential V satisfying Eq. �2� and for
any energy E�E0, Prodan showed that there was some scal-
ing �V, with ��0, such that a bound state with energy E
exists. Furthermore, the limit E→E0 was shown to corre-
spond to �→0, so that an arbitrarily weak potential satisfy-
ing �2� must localize a state.

III. 2D LOCALIZATION IN d DIMENSIONS

We would like to extend these results to an unperturbed
Hamiltonian H0=−�2+V0 that is periodic in d dimensions
and where the defect potential V is localized along one or
two dimensions and is periodic in the other dimensions. A
physical example of 2D localization would be a linear defect
or “quantum wire” in a 3D crystal, localizing a wave func-
tion to propagate along the line, whereas an example of 1D
localization in 3D would be a planar defect.

A. Periodicity of V0 and V

In this case, V0 is a periodic potential in d dimensions,
while V is periodic only in d−2 dimensions but localized in
the other two. It is convenient to separate the periodic and
nonperiodic coordinates of V by writing V as V�r ,� ,z�,
where z�Rd−2, which is periodic in z with some lattice vec-
tors. The first two coordinates are in polar form for conve-
nience in defining what we mean by “localization,” which
occurs in r only. V0, on the other hand, is periodic in all
dimensions, but for convenience, we also write it as
V0�r ,� ,z�. A schematic 2D example of such a V and V0,
where V is localized in only one dimension and periodic in
one other, is shown in Fig. 2. Note that it is irrelevant in our
proof whether V0 is periodic in any �r ,�� plane, which only
occurs if �r ,�� corresponds to a lattice plane1 of V0 �such an
orthogonal supercell exists only under certain conditions on
the lattice vectors37�.

The corresponding Laplacian for these coordinates is

�2 = �r,�
2 + �z

2 = � �2

�r2 +
1

r

�

�r
+

1

r2

�2

��2� + �
j=3

d
�2

�xj
2 . �17�

In this section and the next, the symbol �f will be interpreted
as

� f 
 �
0

�

rdr�
0

2


d��
�

dd−2zf�r,�,z� , �18�

where � is the primitive cell in z.

B. Generalized localization below ground state

Due to the periodicity of the potentials, we apply Bloch’s
theorem to reduce this problem to a unit cell in z, in which
case a “localized” mode is a point eigenvalue as in the pre-
vious section, and we can prove localization by an identical
variational approach.

In particular, all eigensolutions can be chosen in the Bloch
form �0=�0

k�r ,� ,z�eik·z, where �0
k is periodic in z with the

same periodicity as V �and V0� and k is some Bloch
wavevector.1 Substituting this into H0�=E�, one obtains the
“reduced” Hamiltonian

H0
k = − �2 − 2ik · �z + k2 + V0, �19�

whose eigenvalues E�k� are the k-dependent band structures.
The domain is now only the primitive cell in z with periodic
boundary conditions. For each k, there is a minimum energy,
E0�k�, associated with each reduced Hamiltonian H0

k, i.e.,
H0

k�0
k =E0�k��0

k for some Bloch wave function �0
k. ��0

keik·z is
merely one of the Bloch wave functions for the underlying
potential V0 such that the projection of the original
d-dimensional Bloch wavevector onto the z dimensions
gives k. Therefore, ��0

k� is bounded.� The claim we wish to
prove is that the above conditions �just as in Sec. II� guaran-
tee the existence of a bound state with energy below E0�k�
for each k. Moreover, the previous theorem of Sec. II be-
comes merely the special case when k=0 and there are no
extra dimensions of periodicity.

C. Proof of 2D localization in d dimensions

The proof follows the same outline as in Sec. II �just
replace �0 with �0

k�. There are only two small differences. H0
k

in Eq. �19� has the additional terms 2ik ·�z and k2, but
�z�=0 so this additional term only acts on �0

k and is part of
the �H0−E0��0

k =0 cancellation as before in Eq. �8�. The sec-
ond difference is that these integrals are over R2�Rd−2

�where the part over Rd−2 is actually just over a primitive

FIG. 2. �Color online� Linear defect for a periodic lattice �red
circles� in two dimensions is created by adding a defect potential
�blue circles� that is periodic along the z direction, commensurate
with the periodicity of the underlying lattice. This will localize a
state with respect to the perpendicular directions, denoted r.
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cell�, instead of over R2. This simply means that, in Eq. �12�,
instead of factoring out max���0

k�2� in the bound, we factor
out max���0

k�2� multiplied by the volume of the primitive cell
�since the remaining integrand is independent of z�.

D. Proof of 1D localization

The analysis is the same except we now have V0

=V0�x ,z� and �=�0
keik·ze−
x2

.

IV. BOUND STATES WITHIN A BAND GAP

Now, we suppose that there is a gap in the spectrum of H0
k

�at a particular k in d dimensions� from E1 up to E2 �with
corresponding band-edge Bloch wave functions �1

k and �2
k�

as shown in Fig. 1 and we prove sufficient conditions for V
to localize a state along one or two dimensions with an en-
ergy in the gap �with periodicity as defined in the previous
section�. Intuitively, if V is mostly negative, then a state will
be pulled down into the gap from the higher-energy edge E2.
If it is mostly positive instead, then a state will be pushed up
into the gap from the lower energy edge E1. On the other
hand, if the potential is too strong, then the band-edge state
will be pulled or pushed all the way across the gap and will
cease to be localized, hinting that we may need some upper
bound on the strength of the defect potential even if there is
no lower bound. This will be made quantitative in Sec. IV A.

The idea behind the actual proof is to translate it to a
simpler problem so that the methods of Sec. II can be used.
That is, we must somehow alter the operator H so that we are
localizing below the “ground state” of an altered H0 and can
use the variational principle. This is achieved by considering
�H−Eg�2, where Eg= �E2−E1� /2, instead of just H, which
transforms the spectrum as shown in Fig. 3. This idea comes
from the localization proofs of Ref. 24 as well as from nu-
merical techniques.26,27 The trial function is motivated once
again by Ref. 13.

A. Statement of the theorem

For ease of notation, we will omit the k superscripts in
this section. We will prove gap localization under the follow-
ing conditions. The intuition that V should be mostly nega-
tive or positive corresponds to our condition

� V��1�2 � 0 and/or � V��2�2 � 0. �20�

The intuition that V cannot be too big corresponds to

2�Ei − Eg��� V��i�2� �� V2��i�2, �21�

where i depends on which case of Eq. �20� was satisfied; that
is, from which band edge we are pulling a localized state.
�Conditions �20� and �21� can be merged into a single con-
dition, below, that Eq. �28� is negative.� We also require that
V be sufficiently localized in r, corresponding to the condi-
tion

� �V���i�2 � � and � V2��i�2 � � . �22�

These conditions are sufficient to guarantee a bound state in
the gap for the perturbed Hamiltonian H=H0+V, i.e., a lo-
calized state in the �r ,�� dimensions.

B. Proof of 2D localization

Considering one band edge at a time, we will prove local-
ization of a bound state “pulled” from the band edge Ei for
i=1,2. The proof will be split up into several steps to make
it easier to follow. The method employed is the same as that
in Sec. II.

The variational principle in this problem can be used after
shifting the center of the gap to the zero position and squar-
ing the resulting operator thus making it sufficient to find a
normalizable trial function � such that

��,�H − Eg�2�	
��,�	

� �Ei − Eg�2 
 ��E�2 �23�

or, equivalently,

��H − Eg���2 − ��E�2���2 � 0. �24�

Consider the trial function �=��i, where �=exp�−�1+r�
�
as before. Similar to Sec. II, we will show that this � will
satisfy condition �24� for some small 
 providing conditions
�20�–�22� are also satisfied.

After some algebraic manipulations and using the fact that
H0�i=Ei�i, the left-hand side of Eq. �24� becomes �as shown
in more detail in the Appendix�

��H − Eg���2 − ��E�2���2

= ��E�� ��i�2��2��2� − 2��2�� , �25�

+ 2��E�� V���2 + �V��2

−� V����i�2 · ���2� − 2��i�2��2�� , �26�

+ 4���i · ���2 + ��i�
2��2

+ 2� �2� � ��i�2 · �� . �27�

FIG. 3. The leftmost plot is a schematic picture of the spectrum
��H� �with some arbitrary origin 0�. The first step is to shift the
center of the gap to the zero position by subtracting Eg. The middle
plot shows ��H−Eg�. Then, the operator is squared and all energies
become positive. The final plot shows ���H−Eg�2�: any eigenvalue
introduced into the gap of the original operator will now be an
extremal eigenvalue of the shifted and squared operator.
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It is a bit cumbersome, but we can separate the integrals
into four main groups to avoid calculating each one individu-
ally. The first group consists of Eq. �25�, but we have already
shown that this integral tends to zero as 
→0 in Sec. II �see
Eqs. �12� and �13��.

The second group consists of all the integrals which in-
volve V. These are all contained in Eq. �26�. Taking the limit
as 
→0 is allowed to pass through the integrals because
everything is bounded by either a constant times V or a con-
stant times V2 and our assumption �22� allows us to use
Lebesgue’s dominated convergence theorem36 to commute
the limits with integration. The limit of these integrals as 

→0 is

e−2� V2��i�2 + 2�Ei − Eg�e−2� V��i�2, �28�

where the rightmost integrand of Eq. �26� vanishes for 

→0 because differentiating � results in at least one 
 factor.
Equation �28� is strictly negative under conditions �20� and
�21�. Namely, the V2 term is smaller than the V term by Eq.
�21�, and Eq. �20� implies that the �Ei−Eg�V��i�2 integral is
negative for either i=1 or i=2.

We now move on to the final terms: everything in Eq.
�27�. We wish to show that they all tend to zero as 
→0 and
we can do this easily by concentrating on the term that de-
cays most slowly with respect to r, so that all the other terms
which decay faster clearly go to zero as well �provided that
the terms have the same or higher order for the 
 factor in
front�. The three integrals of Eq. �27�, dropping bounded
terms such as ��i�2, are �from left to right in Eq. �27��:

����2 = 
2�1 + r�2
−2�2, �29�

��2��2 = 
2�1 + r�2
−4�
�1 + r�
 − 
 −
1

r

2

�2, �30�

�2� � � = 
2�1 + r�2
−3�
�1 + r�
 − 
 −
1

r

�2. �31�

Each has at least an 
2 factor in front. Upon inspection, we
find that the most slowly decaying term out of these three is
the ����2 term, which goes as 1 /r2 in the limit of 
→0 and
its limit is

lim

→0

�
0

�


2�1 + r�2
−2�2rdr → 0, �32�

as was already shown in Eqs. �12� and �13�. Since Eq. �29�
dominates Eq. �27�, the other terms are all asymptotically
bounded by some constant times this integral and hence must
also have integral zero in the limit as 
→0.

What has been shown is that every term from the left-
hand side of Eq. �24� vanishes except for the one term �28�,
which is negative. This establishes the existence of a bound
state.

C. Proof of 1D localization

The case for 1D localization can be proved in an analo-
gous way, with simpler calculations, by using the trial func-

tion �0e−
x2
just as before. A closely related result in 1D was

presented by Prodan:4 for any defect potential V satisfying
Eq. �20� and for any energy E in the gap, Prodan showed that
there was some scaling �V with ��0 such that a bound state
with energy E exists. Furthermore, the limit as E approaches
the band edge corresponding to Eq. �20� was shown to cor-
respond to �→0, so that the limit of an arbitrarily weak
potential satisfying Eq. �20� must localize a state in the gap.

V. SOME FURTHER GENERALIZATIONS

A. Necessity of periodicity?

In all our derivations, we did not actually explicitly use
the fact that V0 was periodic in the dimensions where local-
ization would take place. All we used were a few of the
properties of periodic potentials. These are:

�i� the energies are bounded from below;
�ii� there may be a finite gap inside the continuous spec-

trum;
�iii� the generalized eigenfunctions corresponding to the

infimum or gap-edge energies are bounded �and their deriva-
tives are bounded�.

For gap localization, we also assumed that the squared
operator was well-defined, making application of this theo-
rem to delta-function potentials �Kronig-Penney models� ap-
pear problematic, although it is possible that the difficulty is
surmountable with a sufficiently careful limiting process. �In
physical contexts, the difference between a theoretical
infinite-depth V0 and a finite-depth approximation seems
scarcely relevant.� Also, we assumed coinciding essential
spectra for H0 and H in order to utilize the variational prin-
ciple. This means that there are some restrictions on how
large of a perturbation V can be. However, Weyl’s theorem
states one sufficient condition,31,32 which appears to be sat-
isfied for most physically interesting V’s; see also the com-
ments after Eq. �3�.

Assumption �iii� may be more challenging to prove for
nonperiodic potentials. We assumed that the energies at the
infimum of the spectrum and/or the edges of spectral gaps
correspond to eigenvalues with bounded generalized eigen-
functions ��0 or �i�. �This corresponds to the requirement of
a regular ground state in Ref. 15.� For periodic potentials, the
existence of a band-edge solution for V0 follows from the
well-known continuity of the band diagram as a function of
the Bloch wavevector k. For nonperiodic potentials V0, how-
ever, this is not necessarily true. For example, for the 1D
half-well potential V0�x�=� for x�0 and =0 for x�0, the
eigenfunctions sin��x� do not have a nonzero infimum-
energy solution for �→0 and correspondingly it is well
known that any perturbation V must exceed some threshold
depth before a bound state appears in that case—this is math-
ematically equivalent to the appearance of an odd bound-
state solution ��−x�=−��x� for V0=0 and an even perturba-
tion V�−x�=V�x�, which requires a threshold depth since the
lowest-energy bound state in that case is even. It is not clear
to us under what conditions the requisite infimum or gap-
edge solutions exist for more general potentials, such as qua-
siperiodic potentials V0, although some examples are given
in Ref. 15.
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B. Degeneracy at the band edges

As mentioned earlier, it could happen that there are mul-
tiple �degenerate� linearly independent �i’s corresponding to
a given energy Ei at an edge of the gap and/or at the infimum
of the spectrum. Our proof in the preceding sections is
unaffected—there must still be at least one bound state lo-
calized by a suitable V, as long as the requisite conditions
�Eq. �2� or �20�–�22�� hold for at least one of the degenerate
�i wave functions. Intuitively, however, one might expect to
be able to prove a stronger theorem in this case—if Ei is
D-fold degenerate, can one show that D-localized states are
formed by a suitable V?

To prove the existence of more than one localized state,
we can employ a generalization of the min-max theorem. For
a single localized state, our proof involved the fact that the
ground-state eigenvalue of a Hermitian operator O is
bounded above by the Rayleigh quotient Q���
= �� ,O�	 / �� ,�	 for any �. The generalization of this fact is
that the nth eigenvalue �n is bounded above by19

�n � sup
��Sn

Q��� , �33�

where Sn is any n-dimensional subspace of the Sobolev space
for O. We then wish to show that �n�b for some bound b:
O=H−E0 and b=0 for localization below the infimum of the
spectrum or O= �H−Eg�2 and b= �Ei−Eg�2 for localization in
the gap from edge i. This is equivalent to proving that the
Hermitian form B�� ,	�= �� , �O−b�		 is negative definite
for some n-dimensional subspace Sn �i.e., B�� ,���0 for all
��Sn�.

If Ei is D-fold degenerate, with degenerate generalized
eigenfunctions �i

� for �=1, . . . ,D, then the analog of our
previous approach is to form the trial functions ��=��i

�

�whose span is a subspace SD�, compute the D�D matrix
B���=B��� ,����, and check whether it is negative definite as

→0. We wish to find the largest subspace Sn of SD for
which B is negative definite, which corresponds to the num-
ber n of negative eigenvalues of B: this will be the number n
of localized states that are guaranteed by the theorem.

For localization below the infimum of the spectrum by a
V satisfying Eq. �3�, following exactly the same steps as in
Sec. III, proving that B�� ,	� is negative definite in this sub-
space reduces to a generalization of condition �2�. Specifi-
cally, showing B�� ,���0 in the subspace for 
→0 reduces,
via Eq. �16�, to showing that �V���2�0 for every � in the
subspace. In other words, the Hermitian form A�� ,	�
= �� ,V		 must be negative definite in Sn. In the 
→0 limit,
this corresponds to checking the eigenvalues of the D�D

matrix A���=A��0
� ,�0

���: the number of negative eigenvalues
of A is precisely the dimension of the largest negative-
definite subspace Sn and hence is the number of bound states
that are guaranteed to be localized below the ground state of
V0. If we happen to have a strictly nonpositive V�0, then
the Hermitian form A is automatically negative definite and
we are guaranteed D localized modes.

For localization in a gap by a V satisfying Eq. �22�, pull-
ing states from band edge i, following exactly the same steps
as in Sec. IV, one finds that B�� ,	� being negative definite

reduces to a generalization of condition �28�: the Hermitian
form G�� ,	�= �� , �V2+2�Ei−Eg�V�		 must be negative
definite in Sn. As above, this simplifies for 
→0 to counting
the number of negative eigenvalues of the D�D matrix

G���=G��i
� ,�i

���. The number of negative eigenvalues is the
number of solutions that are guaranteed to be localized from
band edge i. If V has sign everywhere opposite to Ei−Eg and
is sufficiently small �to overwhelm the V2 term�, then D
eigenstates will be localized from this band edge.

This analysis appears to be closely related to the
asymptotic technique of Ref. 28, which also relates a number
of bound modes to the number of eigenvalues of a given sign
of a small matrix, via the Birman-Schwinger principle in the
limit of weak perturbations, but that work only explicitly
considered localization below the ground state of translation-
invariant elliptic and Schrödinger-type unperturbed opera-
tors.

VI. CONCLUDING REMARKS

Although the existence of localized solutions from defects
in periodic potentials and the effective-mass analogy with the
vacuum case are well known as a practical computational
and experimental matter, it is gratifying to have a general,
explicit proof that localization in one and two dimensions
occurs in a similar manner to localization in vacuum. A num-
ber of directions suggest themselves for future research. Al-
though the simplicity of an elementary proof based on the
min-max or variational theorem has its own appeal, the ap-
plication of more sophisticated methods such as those of Ref.
11 may reveal additional information about the nature of the
localized state �such as its asymptotic localization length�
that cannot be gleaned from a simple variational analysis. We
would also like to transfer these results from the Schrödinger
�scalar� picture to the Maxwell �vector� one, in the context of
localization in band gaps of photonic crystals such as
photonic-crystal fibers.2 A similar generalization to electro-
magnetism was already obtained for localization below the
infimum of the spectrum �corresponding to total internal re-
flection in Maxwell’s equations� for nonperiodic19 and
periodic20 media and in photonic band gaps for sufficiently
large defects.24,38

For localization in gaps, we should remark that the con-
dition �21� on the size of the perturbation V is somewhat
unsatisfying. Intuitively, a “small” perturbation V could be
one where either �V� is small at every point or where �V� is
not small but the support of V is small. The latter case, how-
ever, of a large �V� with a small integral violates our small-
ness condition �21� for a sufficiently large �V� no matter how
small the support might be. This does not mean that there are
no localized states in that limit—our proof only gives a suf-
ficient condition for localization, not a necessary condition—
but it suggests that some reformulation to handle this physi-
cally interesting possibility might be desirable.
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APPENDIX

Here we will provide more details for the calculations of
Secs. II and IV. Let � be an eigenstate multiplied by a real
function � whose derivatives decay quickly enough, i.e., �
=�0�, where and � is real �we can think of the example used
in this paper� and �0 is bounded and satisfies H0�0=E0�0.
We will explore some of the terms in both �� , �H−E0��	 and
��H−Eg�� , �H−Eg��	. Our goals in the above sections were
to show that most terms tended to zero. In order for this to be
apparent, we had to perform several algebraic manipulations
of the integrals that are given here more explicitly.

1. Calculations for Sec. II

We will derive the general formula used in Sec. II first.
We have

�H − E0�� = �− �2�0 + V0�0�� − E0�0� + V� − 2 � �0 · ��

− �0�
2� = V� − 2 � �0 · �� − �0�

2� , �A1�

since �−�2+V0��0=E0�0, so that U���= �� , �H−E0��	 is

U��� =� V���2 − 2� ��0
� � �0 · �� −� ��0�2��2� .

�A2�

Because U��� must always be real and � is assumed to be
real, the imaginary part of �0

���0 must integrate to zero.
Therefore, we can replace 2�0

���0 by �0
���0+�0��0

� in the
integrand. We can also use the identity ���= 1

2 � ��2� so that
Eq. �A2� becomes

� V���2 −
1

2
� ���0�2 · ���2� −� ��0�2��2� . �A3�

We now rewrite middle term in another manner in order to
eliminate the slowly decaying second derivative of � using
integration by parts

� ���0�2 · ���2� = �
�

��0�2 � ��2� −� ��0�2�2��2�

�A4�

=−� ��0�2�2��2� , �A5�

where “��” stands for the boundary integral. The boundary
integral is zero because the � term and it first derivative
decay fast enough and �0 is bounded. Therefore, all we have
to show in Sec. II is that

� V���2 +
1

2
� ��0�2�2��2� −� ��0�2��2� � 0 �A6�

for some sufficiently small choice of the parameter 
.

2. Calculations for Sec. IV

We will now derive the general formula used in Sec. IV.
The same assumptions hold as in the previous section, but
with minor modifications from Sec. IV, for example, �
=�i�, where i=1,2, signifies the lower or upper edge of the
band gap, respectively. First, we calculate �H−Eg��,

�H − Eg�� = ��E�� + V� − 2 � �i · �� − �i�
2� , �A7�

where �E=Ei−Eg as in Sec. IV. Then the generalized equa-
tion for ��H−Eg���2 is given by �employing some of the
trivial simplifications from the previous section�

��E�2���2 + 2��E�� V���2 + �V��2 �A8�

−� V � ��i�2 · ���2� − 2� V��i�2��2� �A9�

− 2��E�� ��i�2��2� �A10�

+ ��i�
2��2 + 2� �2� � ��i�2 · �� �A11�

− ��E�� ���i�2 · ���2� + 4���i · ���2. �A12�

Notice that the first term in Eq. �A12� is similar to the middle
term in Eq. �A3� from the previous section, so the same
analysis shows that the terms of Eq. �A12� become

+ ��E�� ��i�2�2��2� + 4���i · ���2. �A13�

In Eq. �25�, this first term of Eq. �A13� is combined with
term �A10�. Several of the other terms are rearranged to
make the presentation more concise.

*stevenj@math.mit.edu
1 N. W. Ashcroft and N. D. Mermin, Solid State Physics �Harcourt,

Orlando, FL, 1976�.
2 J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade,

Photonic Crystals: Molding the Flow of Light, 2nd ed. �Prince-

ton University Press, Princeton, NJ, 2008�.
3 N. F. Mott and R. W. Gurney, Electronic Processes in Ionic

Crystals �Dover, New York, 1964�.
4 E. Prodan, Phys. Rev. B 73, 085108 �2006�.
5 P. A. Deift and R. Hempel, Commun. Math. Phys. 103, 461

PARZYGNAT et al. PHYSICAL REVIEW B 81, 155324 �2010�

155324-8

http://dx.doi.org/10.1103/PhysRevB.73.085108
http://dx.doi.org/10.1007/BF01211761


�1986�.
6 F. Gesztesy and B. Simon, Commun. Math. Phys. 116, 503

�1988�.
7 R. Hempel, J. Math. Anal. Appl. 169, 229 �1992�.
8 O. L. Safronov, J. Math. Anal. Appl. 260, 641 �2001�.
9 D. Hundertmark and B. Simon, J. Math. Anal. Appl. 340, 892

�2008�.
10 O. Post, Math. Nachr. 261-262, 141 �2003�.
11 B. Simon, Ann. Phys. 97, 279 �1976�.
12 E. N. Economou, Green’s Functions in Quantum Physics, 3rd ed.

�Springer, Heidelberg, 2006�.
13 K. Yang and M. de Llano, Am. J. Phys. 57, 85 �1989�.
14 D. Hundertmark, Proc. Symp. Pure Math. 76, 463 �2007�.
15 R. L. Frank, B. Simon, and T. Weidl, Commun. Math. Phys.

282, 199 �2008�.
16 L. D. Landau and E. M. Lifshitz, Quantum Mechanics: Non-

Relativistic Theory �Pergamon Press, Oxford, 1977�.
17 S. Brandt and H. D. Dahmen, The Picture Book of Quantum

Mechanics, 3rd ed. �Springer, Heidelberg, 2000�.
18 H. Picq, Ph.D. thesis, Université de Nice, 1982.
19 A. Bamberger and A. S. Bonnet, SIAM J. Math. Anal. 21, 1487

�1990�.
20 K. K. Y. Lee, Y. Avniel, and S. G. Johnson, Opt. Express 16,

9261 �2008�.
21 D. Damanik, D. Hundertmark, R. Killip, and B. Simon, Com-

mun. Math. Phys. 238, 545 �2003�.
22 F. Gesztesy and B. Simon, Trans. Am. Math. Soc. 335, 329

�1993�.
23 R. Hempel, Contemp. Math. 458, 393 �2008�.
24 P. Kuchment and B. Ong, in Waves in Periodic and Random

Media, Contemporary Mathematics Vol. 339 �American Math-
ematical Society, Providence, 2003�, pp. 105–115.

25 Templates for the Solution of Algebraic Eigenvalue Problems: A
Practical Guide, edited by Z. Bai, J. Demmel, J. Dongarra,
A. Ruhe, and H. Van Der Vorst �SIAM, Philadelphia, 2000�.

26 S. Johnson and J. Joannopoulos, Opt. Express 8, 173 �2001�.
27 L.-W. Wang and A. Zunger, J. Chem. Phys. 100, 2394 �1994�.
28 T. Weidl, Commun. Partial Differ. Equ. 24, 25 �1999�.
29 A. Pushnitski, F. Gesztesy, and B. Simon �private communica-

tion�.
30 B. Ilan and M. I. Weinstein, Multiscale Model. Simul. �to be

published�.
31 P. D. Hislop and I. M. Sigal, Introduction to Spectral Theory

With Applications to Schrödinger Operators, Applied Math-
ematical Sciences Vol. 113 �Springer, New York, 1996�.

32 M. Schechter, Operator Methods in Quantum Mechanics �North-
Holland, Amsterdam, 1981�.

33 D. J. Griffiths, Introduction to Quantum Mechanics, 2nd ed.
�Benjamin Cummings, New York, 2004�.

34 R. Shankar, Principles of Quantum Mechanics, 2nd ed.
�Springer, Heidelberg, 1994�.

35 M. Reed and B. Simon, Methods of Modern Mathematical Phys-
ics: Vol. IV Analysis of Operators �Academic Press, London,
1978�.

36 W. Rudin, Real and Complex Analysis, 3rd ed. �McGraw-Hill,
New York, 1987�.

37 R. Bucksch, J. Appl. Crystallogr. 6, 400 �1973�.
38 D. Miao, J. Math. Phys. 49, 063511 �2008�.

SUFFICIENT CONDITIONS FOR TWO-DIMENSIONAL… PHYSICAL REVIEW B 81, 155324 �2010�

155324-9

http://dx.doi.org/10.1007/BF01211761
http://dx.doi.org/10.1007/BF01229205
http://dx.doi.org/10.1007/BF01229205
http://dx.doi.org/10.1016/0022-247X(92)90113-R
http://dx.doi.org/10.1006/jmaa.2001.7521
http://dx.doi.org/10.1016/j.jmaa.2007.08.059
http://dx.doi.org/10.1016/j.jmaa.2007.08.059
http://dx.doi.org/10.1002/mana.200310117
http://dx.doi.org/10.1016/0003-4916(76)90038-5
http://dx.doi.org/10.1119/1.15878
http://dx.doi.org/10.1007/s00220-008-0453-1
http://dx.doi.org/10.1007/s00220-008-0453-1
http://dx.doi.org/10.1137/0521082
http://dx.doi.org/10.1137/0521082
http://dx.doi.org/10.1364/OE.16.009261
http://dx.doi.org/10.1364/OE.16.009261
http://dx.doi.org/10.1007/s00220-003-0868-7
http://dx.doi.org/10.1007/s00220-003-0868-7
http://dx.doi.org/10.2307/2154271
http://dx.doi.org/10.2307/2154271
http://dx.doi.org/10.1364/OE.8.000173
http://dx.doi.org/10.1063/1.466486
http://dx.doi.org/10.1080/03605309908821417
http://dx.doi.org/10.1107/S0021889873008952
http://dx.doi.org/10.1063/1.2948895

